Zur Kurzanzeige

dc.contributor.authorBuchweitz, Ragnar-Olaf
dc.contributor.authorFaber, Eleonore
dc.contributor.authorIngalls, Colin
dc.date.accessioned2018-07-04T06:29:50Z
dc.date.available2018-07-04T06:29:50Z
dc.date.issued2018-07-01
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1372
dc.description.abstractWe show how Coxeter’s work implies a bijection between complex reflection groups of rank two and real reflection groups in 0(3). We also consider this magic square of reflections and rotations in the framework of Clifford algebras: we give an interpretation using (s)pin groups and explore these groups in small dimensions.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,13
dc.subjectFinite reflection groupsen_US
dc.subjectClifford algebrasen_US
dc.subjectQuaternionsen_US
dc.subjectPin groupsen_US
dc.subjectMcKay correspondenceen_US
dc.titleThe Magic Square of Reflections and Rotationsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2018-13
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-13en_US
local.subject.msc20en_US
local.subject.msc15en_US
local.subject.msc11en_US
local.subject.msc14en_US
dc.identifier.urnurn:nbn:de:101:1-2018082111050750894138
dc.identifier.ppn1655291718


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige