dc.contributor.author | Buchweitz, Ragnar-Olaf | |
dc.contributor.author | Faber, Eleonore | |
dc.contributor.author | Ingalls, Colin | |
dc.date.accessioned | 2018-07-04T06:52:00Z | |
dc.date.available | 2018-07-04T06:52:00Z | |
dc.date.issued | 2018-07-02 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1373 | |
dc.description.abstract | We construct a noncommutative desingularization of the discriminant of a finite reflection group $G$ as a quotient of the skew group ring $A=S*G$. If $G$ is generated by order two reflections, then this quotient identifies with the endomorphism ring of the reflection arrangement $\mathcal{A}(G)$ viewed as a module over the coordinate ring $S^G/(\Delta)$ of the discriminant of $G$. This yields, in particular, a correspondence between the nontrivial irreducible representations of $G$ to certain maximal Cohen--Macaulay modules over the coordinate ring $S^G/(\Delta)$. These maximal Cohen--Macaulay modules are precisely the nonisomorphic direct summands of the coordinate ring of the reflection arrangement $\mathcal{A} (G)$ viewed as a module over $S^G/(\Delta)$. We identify some of the corresponding matrix factorizations, namely the so-called logarithmic co-residues of the discriminant. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,14 | |
dc.subject | Reflection groups | en_US |
dc.subject | Hyperplane arrangements | en_US |
dc.subject | Maximal Cohen–Macaulay modules | en_US |
dc.subject | Matrix factorizations | en_US |
dc.subject | Noncommutative desingularization | en_US |
dc.title | A McKay Correspondence for Reflection Groups | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-14 | |
local.scientificprogram | OWLF 2017 | en_US |
local.series.id | OWP-2018-14 | en_US |
local.subject.msc | 14 | en_US |
local.subject.msc | 13 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2018082111103787670483 | |
dc.identifier.ppn | 1655292005 | |