dc.contributor.author | Kawohl, Bernd | |
dc.contributor.author | Lucia, Marcello | |
dc.date.accessioned | 2018-08-16T11:59:35Z | |
dc.date.available | 2018-08-16T11:59:35Z | |
dc.date.issued | 2018-08-16 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1385 | |
dc.description.abstract | We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain $\Omega$ with analytic boundary $\partial\Omega$ having at least one bounded connected component \begin{eqnarray*} \left\{ \begin{array}{l} - \Delta u = g(u) \quad \hbox{in } \Omega,\\ \frac{\partial u}{\partial \nu} =0 \, \hbox{ and } \, u = c \hbox{ on } \partial \Omega, \end{array} \right. \end{eqnarray*} where $c$ is a constant. When $g(c) =0$ the constant solution $u \equiv c$ is the unique solution. For $g(c) \not =0$, we show that the boundary is a circle if and only if the problem admits a solution that has constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,18 | |
dc.subject | Schiffer problem | en_US |
dc.subject | Pompeiu problem | en_US |
dc.subject | Overdetermined boundary value problem | en_US |
dc.title | Some Results Related to Schiffer's Problem | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-18 | |
local.scientificprogram | Research in Pairs 2013 | en_US |
local.series.id | OWP-2018-18 | en_US |
local.subject.msc | 35 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2018082111135716053045 | |
dc.identifier.ppn | 1655292412 | |