dc.contributor.author | Detinko, Alla | |
dc.contributor.author | Flannery, Dane | |
dc.contributor.author | Hulpke, Alexander | |
dc.date.accessioned | 2018-10-26T07:39:06Z | |
dc.date.available | 2018-10-26T07:39:06Z | |
dc.date.issued | 2018-10-26 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1389 | |
dc.description.abstract | We obtain a computational realization of the strong approximation theorem. That is, we develop algorithms to compute all congruence quotients modulo rational primes of a finitely generated Zariski dense group $H \leq \mathrm{SL}(n, \mathbb{Z})$ for $n \geq 2$. More generally, we are able to compute all congruence quotients of a finitely generated Zariski dense subgroup of $\mathrm{SL}(n, \mathbb{Q})$ for $n > 2$. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2018,22 | |
dc.title | Computing Congruence Quotients of Zariski Dense Subgroups | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2018-22 | |
local.scientificprogram | Research in Pairs 2018 | en_US |
local.series.id | OWP-2018-22 | en_US |
local.subject.msc | 20 | en_US |
local.subject.msc | 68 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2018121110164211104217 | |
dc.identifier.ppn | 1657805719 | |