Show simple item record

dc.contributor.authorDietrich, Heiko
dc.contributor.authorMoravec, Primož
dc.date.accessioned2019-02-27T10:50:35Z
dc.date.available2019-02-27T10:50:35Z
dc.date.issued2019-03-01
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1409
dc.description.abstractLiedtke (2008) has introduced group functors $K$ and $\tilde K$, which are used in the context of describing certain invariants for complex algebraic surfaces. He proved that these functors are connected to the theory of central extensions and Schur multipliers. In this work we relate $K$ and $\tilde K$ to a group functor $\tau$ arising in the construction of the non-abelian exterior square of a group. In contrast to $\tilde K$, there exist efficient algorithms for constructing $\tau$, especially for polycyclic groups. Supported by computations with the computer algebra system GAP, we investigate when $K(G,3)$ is a quotient of $\tau(G)$, and when $\tau(G)$ and $\tilde K(G,3)$ are isomorphic.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2019,08
dc.subjectFinite groupsen_US
dc.subjectSchur multiplieren_US
dc.subjectNon-Abelian exterior squareen_US
dc.titleOn a Group Functor Describing Invariants of Algebraic Surfacesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2019-08
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2019-08en_US
local.subject.msc20en_US
local.subject.msc14en_US
dc.identifier.urnurn:nbn:de:101:1-2019031115254053309220
dc.identifier.ppn1656009463


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record