Show simple item record

dc.contributor.authorLinckelmann, Markus
dc.contributor.authorRubio y Degrassi, Lleonard
dc.date.accessioned2019-04-16T12:40:46Z
dc.date.available2019-04-16T12:40:46Z
dc.date.issued2019-04-17
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1412
dc.description.abstractLet $A$ be a split finite-dimensional associative unital algebra over a field. The first main result of this note shows that if the Ext-quiver of $A$ is a simple directed graph, then $HH^1(A)$ is a solvable Lie algebra. The second main result shows that if the Ext-quiver of $A$ has no loops and at most two parallel arrows in any direction, and if $HH^1(A)$ is a simple Lie algebra, then char(k) is not equal to $2$ and $HH^1(A)\cong$ $sl_2(k)$. The third result investigates symmetric algebras with a quiver which has a vertex with a single loop.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relationAlso published in: Proceedings of the American Mathematical Society 148 (2020) pp. 1879-1890. DOI: 10.1090/proc/14875
dc.relation.ispartofseriesOberwolfach Preprints;2019,10
dc.titleOn the Lie Algebra Structure of $HH^1(A)$ of a Finite-Dimensional Algebra Aen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2019-10
local.scientificprogramOWLF 2018en_US
local.series.idOWP-2019-10en_US
local.subject.msc16en_US
local.subject.msc17en_US
dc.identifier.urnurn:nbn:de:101:1-2019042511363178339195
local.publishers-doi10.1090/proc/14875
dc.identifier.ppn1663601445


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record