dc.contributor.author | Biswas, Kingshook | |
dc.contributor.author | Knieper, Gerhard | |
dc.contributor.author | Peyerimhoff, Norbert | |
dc.date.accessioned | 2019-05-08T09:51:38Z | |
dc.date.available | 2019-05-08T09:51:38Z | |
dc.date.issued | 2019-05-08 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1417 | |
dc.description.abstract | Let $X$ be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of non-positive curvature and, in particular all known examples of harmonic manifolds except for the flat spaces. Denote by $h > 0$ the mean curvature of horospheres in $X$, and set $\rho = h/2$. Fixing a basepoint $o \in X$, for $\xi \in \partial X$, denote by $B_{\xi}$ the Busemann function at $\xi$ such that $B_{\xi}(o) = 0$. then for $\lambda \in \mathbb{C}$ the function $e^{(i\lambda - \rho)B_{\xi}}$ is an eigenfunction of the Laplace-Beltrami operator with eigenvalue $-(\lambda^2 + \rho^2)$. For a function $f$ on $X$, we define the Fourier transform of $f$ by $$\tilde{f}(\lambda, \xi) := \int_X f(x) e^{(-i\lambda - \rho)B_{\xi}(x)} dvol(x)$$ for all $\lambda \in \mathbb{C}, \xi \in \partial X$ for which the integral converges. We prove a Fourier inversion formula $$f(x) = C_0 \int_{0}^{\infty} \int_{\partial X}
\tilde{f}(\lambda, \xi) e^{(i\lambda - \rho)B_{\xi}(x)} d\lambda_o(\xi) |c(\lambda)|^{-2} d\lambda$$ for $f \in C^{\infty}_c(X)$, where $c$ is a certain function on $\mathbb{R} - \{0\}$, $\lambda_o$ is the visibility measure on $\partial X$ with respect to the basepoint $o \in X$ and $C_0 > 0$ is a constant. We also prove a Plancherel theorem, and a version of the Kunze-Stein phenomenon. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation | Also published in: Journal of Geometric Analysis 31(2021), no. 1, pp. 126–163. https://doi.org/10.1007/s12220-019-00253-9 | |
dc.relation.ispartofseries | Oberwolfach Preprints;2019,12 | |
dc.title | The Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growth | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2019-12 | |
local.series.id | OWP-2019-12 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2019051609413081575299 | |
local.publishers-doi | https://doi.org/10.1007/s12220-019-00253-9 | |
dc.identifier.ppn | 166580050X | |