Show simple item record

dc.contributor.authorBiswas, Kingshook
dc.contributor.authorKnieper, Gerhard
dc.contributor.authorPeyerimhoff, Norbert
dc.date.accessioned2019-05-08T09:51:38Z
dc.date.available2019-05-08T09:51:38Z
dc.date.issued2019-05-08
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1417
dc.description.abstractLet $X$ be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of non-positive curvature and, in particular all known examples of harmonic manifolds except for the flat spaces. Denote by $h > 0$ the mean curvature of horospheres in $X$, and set $\rho = h/2$. Fixing a basepoint $o \in X$, for $\xi \in \partial X$, denote by $B_{\xi}$ the Busemann function at $\xi$ such that $B_{\xi}(o) = 0$. then for $\lambda \in \mathbb{C}$ the function $e^{(i\lambda - \rho)B_{\xi}}$ is an eigenfunction of the Laplace-Beltrami operator with eigenvalue $-(\lambda^2 + \rho^2)$. For a function $f$ on $X$, we define the Fourier transform of $f$ by $$\tilde{f}(\lambda, \xi) := \int_X f(x) e^{(-i\lambda - \rho)B_{\xi}(x)} dvol(x)$$ for all $\lambda \in \mathbb{C}, \xi \in \partial X$ for which the integral converges. We prove a Fourier inversion formula $$f(x) = C_0 \int_{0}^{\infty} \int_{\partial X} \tilde{f}(\lambda, \xi) e^{(i\lambda - \rho)B_{\xi}(x)} d\lambda_o(\xi) |c(\lambda)|^{-2} d\lambda$$ for $f \in C^{\infty}_c(X)$, where $c$ is a certain function on $\mathbb{R} - \{0\}$, $\lambda_o$ is the visibility measure on $\partial X$ with respect to the basepoint $o \in X$ and $C_0 > 0$ is a constant. We also prove a Plancherel theorem, and a version of the Kunze-Stein phenomenon.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relationAlso published in: Journal of Geometric Analysis 31(2021), no. 1, pp. 126–163. https://doi.org/10.1007/s12220-019-00253-9
dc.relation.ispartofseriesOberwolfach Preprints;2019,12
dc.titleThe Fourier Transform on Harmonic Manifolds of Purely Exponential Volume Growthen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2019-12
local.series.idOWP-2019-12en_US
dc.identifier.urnurn:nbn:de:101:1-2019051609413081575299
local.publishers-doihttps://doi.org/10.1007/s12220-019-00253-9
dc.identifier.ppn166580050X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record