Zur Kurzanzeige

dc.contributor.authorFinashin, Sergey
dc.contributor.authorKharlamov, Viatcheslav
dc.date.accessioned2019-05-15T08:51:41Z
dc.date.available2019-05-15T08:51:41Z
dc.date.issued2019-05-15
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1419
dc.description.abstractIn our previous works we have classified real non-singular cubic hypersurfaces in the 5-dimensional projective space up to equivalence that includes both real projective transformations and continuous variations of co-efficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to their mirror reflection.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relationAlso published in: Revista Matemática Complutense 34(2021), pp. 19–41. https://doi.org/10.1007/s13163-020-00351-1
dc.relation.ispartofseriesOberwolfach Preprints;2019,14
dc.titleChirality of Real Non-Singular Cubic Fourfolds and Their Pure Deformation Classificationen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2019-14
local.scientificprogramResearch in Pairs 2019en_US
local.series.idOWP-2019-14en_US
local.subject.msc14en_US
dc.identifier.urnurn:nbn:de:101:1-2019072314380764596412
local.publishers-doihttps://doi.org/10.1007/s13163-020-00351-1
dc.identifier.ppn1670159566


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige