dc.contributor.author | Duminil-Copin, Hugo | |
dc.contributor.editor | Skuppin, Lara | |
dc.contributor.editor | Jahns, Sophia | |
dc.date.accessioned | 2019-06-04T14:11:57Z | |
dc.date.available | 2019-06-04T14:11:57Z | |
dc.date.issued | 2019-06-04 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1424 | |
dc.description.abstract | In how many ways can you go for a walk along a
lattice grid in such a way that you never meet your
own trail? In this snapshot, we describe some combinatorial
and statistical aspects of these so-called
self-avoiding walks. In particular, we discuss a recent
result concerning the number of self-avoiding walks
on the hexagonal (“honeycomb”) lattice. In the last
part, we briefly hint at the connection to the geometry
of long random self-avoiding walks. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Snapshots of modern mathematics from Oberwolfach;2019,06 | |
dc.rights | Attribution-ShareAlike 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.title | Counting self-avoiding walks on the hexagonal lattice | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.14760/SNAP-2019-006-EN | |
local.series.id | SNAP-2019-006-EN | en_US |
local.subject.snapshot | Probability Theory and Statistics | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2019072412161814968817 | |
dc.identifier.ppn | 1669965376 | |