Show simple item record

dc.contributor.authorDuminil-Copin, Hugo
dc.contributor.editorSkuppin, Lara
dc.contributor.editorJahns, Sophia
dc.date.accessioned2019-06-04T14:11:57Z
dc.date.available2019-06-04T14:11:57Z
dc.date.issued2019-06-04
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1424
dc.description.abstractIn how many ways can you go for a walk along a lattice grid in such a way that you never meet your own trail? In this snapshot, we describe some combinatorial and statistical aspects of these so-called self-avoiding walks. In particular, we discuss a recent result concerning the number of self-avoiding walks on the hexagonal (“honeycomb”) lattice. In the last part, we briefly hint at the connection to the geometry of long random self-avoiding walks.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2019,06
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleCounting self-avoiding walks on the hexagonal latticeen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2019-006-EN
local.series.idSNAP-2019-006-ENen_US
local.subject.snapshotProbability Theory and Statisticsen_US
dc.identifier.urnurn:nbn:de:101:1-2019072412161814968817
dc.identifier.ppn1669965376


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International