Show simple item record

dc.contributor.authorIgnacio Nahuel Zurrián
dc.date.accessioned2016-09-22T10:46:36Z
dc.date.available2016-09-22T10:46:36Z
dc.date.issued2015-07-29
dc.identifier.urihttp://publications.mfo.de/handle/mfo/189
dc.descriptionOWLF 2015en_US
dc.description.abstractIn this work we study in detail the algebra of differential operators $\mathcal{D}(W)$ associated with a Gegenbauer matrix weight. We prove that two second order operators generate the algebra, indeed $\mathcal{D}(W)$ is isomorphic to the free algebra generated by two elements subject to certain relations. Also, the center is isomorphic to the affine algebra of a singular rational curve. The algebra $\mathcal{\mathcal{D}}(W)$ is a finitely-generated torsion-free module over its center, but it is not at and therefore neither projective. After [Tir11], this is the second detailed study of an algebra $\mathcal{D}(W)$ and the first one coming from spherical functions and group representation theory.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2015,07
dc.subjectMatrix Orthogonal Polynomialsen_US
dc.subjectMatrix Differential Operatorsen_US
dc.subjectBispectral Problemen_US
dc.subjectDifferential Operators Algebraen_US
dc.titleThe algebra of differential operators for a Gegenbauer weight matrixen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2015-07
local.scientificprogramOWLF 2015
local.series.idOWP-2015-07
local.subject.msc13
local.subject.msc16
local.subject.msc33
local.subject.msc35


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record