• Bochner-Riesz Means at the Critical Index: Weighted and Sparse Bounds 

      [OWP-2023-16] Beltran, David; Roos, Joris; Seeger, Andreas (Mathematisches Forschungsinstitut Oberwolfach, 2023-11-27)
      We consider Bochner-Riesz means on weighted $L^p$ spaces, at the critical index $\lambda(p)=d(\frac 1p-\frac 12)-\frac 12$. For every $A_1$-weight we obtain an extension of Vargas' weak type $(1,1)$ inequality in some range ...
    • Coorbit Spaces and Dual Molecules: the Quasi-Banach Case 

      [OWP-2022-08] Van Velthoven, Jordy Timo; Voigtlaender, Felix (Mathematisches Forschungsinstitut Oberwolfach, 2022-05-27)
      This paper provides a self-contained exposition of coorbit spaces associated with integrable group representations and quasi-Banach function spaces. It extends the theory in [Studia Math., 180(3):237–253, 2007] to locally ...
    • Mehler-Heine asymptotics of a class of generalized hypergeometric polynomials : 

      [OWP-2013-23] Bracciali, Cleonice F.; Moreno-Balcázar, Juan José (Mathematisches Forschungsinstitut Oberwolfach, 2013-10-29)
      We obtain a Mehler–Heine type formula for a class of generalized hypergeometric polynomials. This type of formula describes the asymptotics of polynomials scale conveniently. As a consequence of this formula, we obtain ...
    • Multivariate Hybrid Orthogonal Functions 

      [OWP-2020-04] Bracciali, Cleonice F.; Pérez, Teresa E. (Mathematisches Forschungsinstitut Oberwolfach, 2020-03-12)
      We consider multivariate orthogonal functions satisfying hybrid orthogonality conditions with respect to a moment functional. This kind of orthogonality means that the product of functions of different parity order ...
    • A Note on Endpoint Bochner-Riesz Estimates 

      [OWP-2023-17] Beltran, David; Roos, Joris; Seeger, Andreas (Mathematisches Forschungsinstitut Oberwolfach, 2023-11-27)
      We revisit an $\varepsilon$-removal argument of Tao to obtain sharp $L^p \to L^r(L^p)$ estimates for sums of Bochner-Riesz bumps which are conditional on non-endpoint bounds for single scale bumps. These can be used to ...
    • On Weak Weighted Estimates of Martingale Transform 

      [OWP-2016-22] Nazarov, Fedor; Reznikov, Alexander; Vasyunin, Vasily; Volberg, Alexander (Mathematisches Forschungsinstitut Oberwolfach, 2016-11-12)
      We consider several weak type estimates for singular operators using the Bellman function approach. We disprove the $A_1$ conjecture, which stayed open after Muckenhoupt-Wheeden's conjecture was disproved by Reguera-Thiele.
    • Weighted Fourier inequalities for radial functions 

      [OWP-2009-26] Gorbachev, D.; Liflyand, E.; Tichonovič, S. V. (Mathematisches Forschungsinstitut Oberwolfach, 2009-03-19)
      Weighted $L^p(\mathbb{R}^n) \to L^q(\mathbb{R}^n)$ Fourier inequalities are studied. We prove Pitt-Boas type results on integrability with power weights of the Fourier transform of a radial function.