• Categoric Aspects of Authentication 

      [OWP-2012-05] Schillewaert, Jeroen; Thas, Koen (Mathematisches Forschungsinstitut Oberwolfach, 2012-04-24)
    • A construction of hyperbolic Coxeter groups 

      [OWP-2010-04] Osajda, Damian (Mathematisches Forschungsinstitut Oberwolfach, 2010)
      We give a simple construction of Gromov hyperbolic Coxeter groups of arbitrarily large virtual cohomological dimension. Our construction provides new examples of such groups. Using this one can construct e.g. new groups ...
    • Edifices: Building-like Spaces Associated to Linear Algebraic Groups; In memory of Jacques Tits 

      [OWP-2023-04] Bate, Michael; Martin, Benjamin; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2023-06-19)
      Given a semisimple linear algebraic $k$-group $G$, one has a spherical building $Δ_G$, and one can interpret the geometric realisation $Δ_G(\mathbb R)$ of $Δ_G$ in terms of cocharacters of $G$. The aim of this paper is to ...
    • Flag-Accurate Arrangements 

      [OWP-2023-01] Mücksch, Paul; Röhrle, Gerhard; Tran, Tan Nhat (Mathematisches Forschungsinstitut Oberwolfach, 2023-02-13)
      In [MR21], the first two authors introduced the notion of an accurate arrangement, a particular notion of freeness. In this paper, we consider a special subclass, where the property of accuracy stems from a flag of flats ...
    • Inductive Freeness of Ziegler’s Canonical Multiderivations for Reflection Arrangements 

      [OWP-2017-14] Hoge, Torsten; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2017-04-30)
      Let $A$ be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction $A''$ of $A$ to any hyperplane endowed with the natural multiplicity is then a free multiarrangement. We initiate a study of the stronger ...
    • On Generalizations of Kac-Moody Groups 

      [OWP-2010-06] Blok, Rieuwert J.; Hoffman, Corneliu (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-10)
      In [7] we define a Curtis-Tits group as a certain generalization of a Kac-Moody group. We distinguish between orientable and non-orientable Curtis-Tits groups and identify all orientable Curtis-Tits groups as Kac-Moody ...
    • Supertropical linear algebra 

      [OWP-2010-14] Izhakian, Zur; Knebusch, Manfred; Rowen, Louis (Mathematisches Forschungsinstitut Oberwolfach, 2010)
      The objective of this paper is to lay out the algebraic theory of supertropical vector spaces and linear algebra, utilizing the key antisymmetric relation of "ghost surpasses." Special attention is paid to the various ...