Zur Kurzanzeige

dc.contributor.authorGrünbaum, F. A.
dc.contributor.authorPacharoni, I.
dc.contributor.authorZurrián, Ignacio Nahuel
dc.date.accessioned2016-09-22T10:46:36Z
dc.date.available2016-09-22T10:46:36Z
dc.date.issued2015-07-29
dc.identifier.urihttp://publications.mfo.de/handle/mfo/190
dc.descriptionOWLF 2015en_US
dc.description.abstractThe main purpose of this paper is to extend to a situation involving matrix valued orthogonal polynomials and spherical functions, a result that traces its origin and its importance to work of Claude Shannon in laying the mathematical foundations of information theory and to a remarkable series of papers by D. Slepian, H. Landau and H. Pollak. To our knowledge, this is the first example showing in a non-commutative setup that a bispectral property implies that the corresponding global operator of "time and band limiting" admits a commuting local operator.This is a noncommutative analog of the famous prolate spheroidal wave operator.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2015,08
dc.subjectTime-band limitingen_US
dc.subjectDouble concentration Matrixen_US
dc.subjectvalued orthogonal polynomialsen_US
dc.titleTime and band limiting for matrix valued functions, an exampleen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2015-08
local.scientificprogramOWLF 2015
local.series.idOWP-2015-08
local.subject.msc33
local.subject.msc22
dc.identifier.urnurn:nbn:de:101:1-2015060913510
dc.identifier.ppn1657061116


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige