Show simple item record

dc.contributor.authorBrandenbursky, Michael
dc.date.accessioned2016-09-22T10:46:39Z
dc.date.available2016-09-22T10:46:39Z
dc.date.issued2013-07-23
dc.identifier.urihttp://publications.mfo.de/handle/mfo/199
dc.descriptionOWLF 2013en_US
dc.description.abstractLet $\Sigma_g$ be a closed hyperbolic surface of genus $g$ and let Ham($\Sigma_ g$) be the group of Hamiltonian diffeomorphisms of $\Sigma_g$. The most natural word metric on this group is the autonomous metric. It has many interesting properties, most important of which is the bi-invariance of this metric. In this work we show that Ham($\Sigma_g$) is unbounded with respect to this metric.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2013,18
dc.subjectGroups of Hamiltonian Diffeomorphismsen_US
dc.subjectMapping Class Groupsen_US
dc.subjectQuasi-Morphismsen_US
dc.subjectBi-Invariant Metricsen_US
dc.titleOn the autonomous metric on groups of Hamiltonian diffeomorphisms of closed hyperbolic surfacesen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2013-18
local.scientificprogramOWLF 2013
local.series.idOWP-2013-18
local.subject.msc53
local.subject.msc57


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record