dc.contributor.author | Brandenbursky, Michael | |
dc.date.accessioned | 2016-09-22T10:46:39Z | |
dc.date.available | 2016-09-22T10:46:39Z | |
dc.date.issued | 2013-07-23 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/199 | |
dc.description | OWLF 2013 | en_US |
dc.description.abstract | Let $\Sigma_g$ be a closed hyperbolic surface of genus $g$ and let Ham($\Sigma_ g$) be the group of Hamiltonian diffeomorphisms of $\Sigma_g$. The most natural word metric on this group is the autonomous metric. It has many interesting properties, most important of which is the bi-invariance of this metric. In this work we show that Ham($\Sigma_g$) is unbounded with respect to this metric. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2013,18 | |
dc.subject | Groups of Hamiltonian Diffeomorphisms | en_US |
dc.subject | Mapping Class Groups | en_US |
dc.subject | Quasi-Morphisms | en_US |
dc.subject | Bi-Invariant Metrics | en_US |
dc.title | On the autonomous metric on groups of Hamiltonian diffeomorphisms of closed hyperbolic surfaces | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2013-18 | |
local.scientificprogram | OWLF 2013 | |
local.series.id | OWP-2013-18 | |
local.subject.msc | 53 | |
local.subject.msc | 57 | |
dc.identifier.urn | urn:nbn:de:101:1-2013071912656 | |
dc.identifier.ppn | 1652932208 | |