dc.contributor.author | Knebusch, Manfred | |
dc.contributor.author | Rowen, Louis | |
dc.contributor.author | Izhakian, Zur | |
dc.date.accessioned | 2016-09-22T10:46:39Z | |
dc.date.available | 2016-09-22T10:46:39Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/200 | |
dc.description | OWLF 2013 | en_US |
dc.description.abstract | We initiate the theory of a quadratic form q over a semiring $R$. As customary, one can write $q(x+y)=q(x)+q(y)+b(x,y)$, where b is a companion bilinear form. But in contrast to the ring-theoretic case, the companion bilinear form need not be uniquely defined. Nevertheless, q can always be written as a sum of quadratic forms $q=\kappa+\rho$, where $\kappa$ is quasilinear in the sense that $\kappa(x+y)=\kappa(x)+\kappa(y)$, and $\rho$ is rigid in the sense that it has a unique companion. In case that $R$ is a supersemifield (cf. Definition 4.1 below) and $q$ is defined on a free $R$-module, we obtain an explicit classification of these decompositions $q=\kappa+\rho$ and of all companions $b$ of $q$. As an application to tropical geometry, given a quadratic form $q:V \to R$ on a free module $V$ over a commutative ring $R$ and a supervaluation $\rho$: $R \to U$ with values in a supertropical semiring [5], we define - after choosing a base $\mathcal{L}=(v_i|i \in I)$ of $V$- a quadratic form $q^\varphi:U^{(I)} \to U$ on the free module $U^{(I)}$ over the semiring $U$. The analysis of quadratic forms over a supertropical semiring enables one to measure the “position” of $q$ with respect to $\mathcal{L}$ via ${\varphi}$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2013,27 | |
dc.subject | Tropical Algebra | en_US |
dc.subject | Supertropical Modules | en_US |
dc.subject | Bilinear Forms | en_US |
dc.subject | Quadratic Forms | en_US |
dc.subject | Quadratic Pairs | en_US |
dc.subject | Supertropicalization | en_US |
dc.title | Supertropical Quadratic Forms I | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2013-27 | |
local.scientificprogram | OWLF 2013 | |
local.series.id | OWP-2013-27 | |
local.subject.msc | 11 | |
local.subject.msc | 15 | |
local.subject.msc | 16 | |
local.subject.msc | 14 | |
local.subject.msc | 13 | |
dc.identifier.urn | urn:nbn:de:101:1-2014013014022 | |
dc.identifier.ppn | 1653203668 | |