dc.contributor.author | Greuel, Gert-Martin | |
dc.contributor.author | Nguyen, Hong Duc | |
dc.date.accessioned | 2016-09-22T10:46:39Z | |
dc.date.available | 2016-09-22T10:46:39Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/201 | |
dc.description | OWLF 2013 | en_US |
dc.description.abstract | We classify isolated singularities $f \in K[[x_1,...,x_n]]$, which are simple, i.e. have no moduli, w.r.t. right equivalence, where $K$ is an algebraically closed field of characteristic $p>0$. For $K=\mathbb{R}$ or $\mathbb{C}$ this classification was initiated by Arnol'd, resulting in the famous ADE-series. The classification w.r.t. contact equivalence for $p>0$ was done by Greuel and Kröning with a result similiar to Arnol'd's. It is surprising that w.r.t. right equivalence and any given $p>0$ we have only finitely many simple singularities, i.e. there are only finitely many $k$ such that $A_k$ and $D_k$ are right simple, all the others have moduli. A major point of this paper is the generalization of the notion of modality to the algebraic setting, its behaviour under morphisms, and its relations to formal deformation theory. As an application we show that the modality is semicontinuous in any characteristic. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2013,28 | |
dc.title | Right Simple Singularities in Positive Characteristic | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2013-28 | |
local.scientificprogram | OWLF 2013 | |
local.series.id | OWP-2013-28 | |
dc.identifier.urn | urn:nbn:de:101:1-2014013014032 | |
dc.identifier.ppn | 1653203749 | |