Zur Kurzanzeige

dc.contributor.authorBetz, Volker
dc.contributor.editorTokus, Sabiha
dc.contributor.editorJahns, Sophia
dc.date.accessioned2019-07-12T09:29:51Z
dc.date.available2019-07-12T09:29:51Z
dc.date.issued2019-07-12
dc.identifier.urihttp://publications.mfo.de/handle/mfo/2510
dc.description.abstract100 people leave their hats at the door at a party and pick up a completely random hat when they leave. How likely is it that at least one of them will get back their own hat? If the hats carry name tags, how difficult is it to arrange for all hats to be returned to their owner? These classical questions of probability theory can be answered relatively easily. But if a geometric component is added, answering the same questions immediately becomes very hard, and little is known about them. We present some of the open questions and give an overview of what current research can say about them.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2019,07
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleRandom permutationsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2019-007-EN
local.series.idSNAP-2019-007-ENen_US
local.subject.snapshotGeometry and Topologyen_US
local.subject.snapshotProbability Theory and Statisticsen_US
dc.identifier.urnurn:nbn:de:101:1-2019072412131953752065
dc.identifier.ppn1677285656


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-ShareAlike 4.0 International