dc.contributor.author | Biswas, Arindam | |
dc.date.accessioned | 2019-07-22T13:30:15Z | |
dc.date.available | 2019-07-22T13:30:15Z | |
dc.date.issued | 2019-07-22 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/2511 | |
dc.description.abstract | Let $G$ be a finite group. It was remarked by Breuillard-Green-Guralnick-Tao that if the Cayley graph $C(G,S)$ is an expander graph and is non-bipartite then the spectrum of the adjacency operator $T$ is bounded away from $-1$. In this article we are interested in explicit bounds for the spectrum of these graphs. Specifically, we show that the non-trivial spectrum of the adjacency operator lies in the interval $\left[-1+\frac{h(\mathbb{G})^{4}}{\gamma}, 1-\frac{h(\mathbb{G})^{2}}{2d^{2}}\right]$, where $h(\mathbb{G})$ denotes the (vertex) Cheeger constant of the $d$ regular graph $C(G,S)$ with respect to a symmetric set $S$ of generators and $\gamma = 2^{9}d^{6}(d+1)^{2}$. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation | Also published in: European Journal of Combinatorics 81(2019), pp. 298-308. doi:10.1016/j.ejc.2019.06.009. https://doi.org/10.1016/j.ejc.2019.06.009 | |
dc.relation.ispartofseries | Oberwolfach Preprints;2019,20 | |
dc.subject | Cheeger inequality | en_US |
dc.subject | Expander graphs | en_US |
dc.subject | Finite Cayley graphs | en_US |
dc.title | On a Cheeger Type Inequality in Cayley Graphs of Finite Groups | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2019-20 | |
local.scientificprogram | OWLF 2017 | en_US |
local.series.id | OWP-2019-20 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2019082214563824513644 | |
local.date-range | 7 July - 7 October 2017 | en_US |
dc.identifier.ppn | 167210954X | |