dc.contributor.author | Kropholler, Peter H. | |
dc.contributor.author | Lorensen, Karl | |
dc.date.accessioned | 2019-08-16T06:31:21Z | |
dc.date.available | 2019-08-16T06:31:21Z | |
dc.date.issued | 2019-08-16 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/2513 | |
dc.description.abstract | A ring $R$ satisfies the $\textit{strong rank condition}$ (SRC) if, for every natural number $n$, the free $R$-submodules of $R^n$ all have rank $\leq n$. Let $G$ be a group and $R$ a ring strongly graded by $G$ such that the base ring $R_1$ is a domain. Using an argument originated by Laurent Bartholdi for studying cellular automata, we prove that $R$ satisfies SRC if and only if
$R_1$ satisfies SRC and $G$ is amenable. The special case of this result for group rings allows us to prove a characterization of amenability involving the group von Neumann algebra that was conjectured by Wolfgang Lück. In addition, we include two applications to the study of group rings and their modules. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation | Also published in: Journal of Algebra 539(2019), pp. 326-338. doi:10.1016/j.jalgebra.2019.08.014. https://doi.org/10.1016/j.jalgebra.2019.08.014 | |
dc.relation.ispartofseries | Oberwolfach Preprints;2019,22 | |
dc.subject | Group-graded ring | en_US |
dc.subject | Strong rank | en_US |
dc.subject | Amenable group | en_US |
dc.title | Group-Graded Rings Satisfying the Strong Rank Condition | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2019-22 | |
local.scientificprogram | Research in Pairs 2015 | en_US |
local.series.id | OWP-2019-22 | en_US |
local.subject.msc | 16 | en_US |
local.subject.msc | 20 | en_US |
local.subject.msc | 43 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2019082215205839719139 | |
dc.identifier.ppn | 1672112117 | |