dc.date.accessioned | 2019-10-24T13:16:19Z | |
dc.date.available | 2019-10-24T13:16:19Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/2935 | |
dc.description.abstract | The subjects of convex and algebraic geometry meet primarily in the theory of toric varieties. Toric geometry is the part of algebraic geometry where all maps are given by monomials in suitable coordinates, and all equations are binomial. The combinatorics of the exponents of monomials and binomials is sufficient to embed the geometry of lattice polytopes in algebraic geometry. Recent developments in toric geometry that were discussed during the workshop include applications to mirror symmetry, motivic integration and hypergeometric systems of PDE’s, as well as deformations of (unions of) toric varieties and relations to tropical geometry. | |
dc.title | Convex and Algebraic Geometry | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2006-5 | |
local.series.id | OWR-2006-5 | |
local.subject.msc | 52 | |
local.subject.msc | 33 | |
local.subject.msc | 16 | |
local.subject.msc | 14 | |
local.sortindex | 375 | |
local.date-range | 29 Jan - 04 Feb 2006 | |
local.workshopcode | 0605 | |
local.workshoptitle | Convex and Algebraic Geometry | |
local.organizers | Klaus Altmann, Berlin; Victor Batyrev, Tübingen; Bernard Teissier, Paris | |
local.report-name | Workshop Report 2006,5 | |
local.opc-photo-id | 0605 | |
local.publishers-doi | 10.4171/OWR/2006/05 | |
local.ems-reference | Altmann Klaus, Batyrev Victor, Teissier Bernard: Convex and Algebraic Geometry. Oberwolfach Rep. 3 (2006), 253-316. doi: 10.4171/OWR/2006/05 | |