dc.date.accessioned | 2019-10-24T13:25:35Z | |
dc.date.available | 2019-10-24T13:25:35Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/2980 | |
dc.description.abstract | The water-wave problem is the study of the two- and threedimensional irrotational flow of a perfect fluid bounded above by a free surface subject to the forces of gravity and surface tension. It is a paradigm for most modern methods in nonlinear functional analysis and nonlinear dispersive wave theory. Its mathematical study calls upon many different approaches, as iteration methods, bifurcation theory, dynamical systems theory, complex variable methods, PDE methods, the calculus of variations, positive operator theory, topological degree theory, KAM theory, and symplectic geometry. | |
dc.title | Mathematical Theory of Water Waves | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2006-50 | |
local.series.id | OWR-2006-50 | |
local.subject.msc | 76 | |
local.sortindex | 420 | |
local.date-range | 12 Nov - 18 Nov 2006 | |
local.workshopcode | 0646a | |
local.workshoptitle | Mathematical Theory of Water Waves | |
local.organizers | Walter L. Craig, Hamilton; Mark D. Groves, Loughborough; Guido Schneider, Karlsruhe | |
local.report-name | Workshop Report 2006,50 | |
local.opc-photo-id | 0646a | |
local.publishers-doi | 10.4171/OWR/2006/50 | |
local.ems-reference | Craig Walter, Groves Mark, Schneider Guido: Mathematical Theory of Water Waves. Oberwolfach Rep. 3 (2006), 3007-30056. doi: 10.4171/OWR/2006/50 | |