Show simple item record

Mathematical Theory of Water Waves

dc.date.accessioned2019-10-24T13:25:35Z
dc.date.available2019-10-24T13:25:35Z
dc.date.issued2006
dc.identifier.urihttp://publications.mfo.de/handle/mfo/2980
dc.description.abstractThe water-wave problem is the study of the two- and threedimensional irrotational flow of a perfect fluid bounded above by a free surface subject to the forces of gravity and surface tension. It is a paradigm for most modern methods in nonlinear functional analysis and nonlinear dispersive wave theory. Its mathematical study calls upon many different approaches, as iteration methods, bifurcation theory, dynamical systems theory, complex variable methods, PDE methods, the calculus of variations, positive operator theory, topological degree theory, KAM theory, and symplectic geometry.
dc.titleMathematical Theory of Water Waves
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2006-50
local.series.idOWR-2006-50
local.subject.msc76
local.sortindex420
local.date-range12 Nov - 18 Nov 2006
local.workshopcode0646a
local.workshoptitleMathematical Theory of Water Waves
local.organizersWalter L. Craig, Hamilton; Mark D. Groves, Loughborough; Guido Schneider, Karlsruhe
local.report-nameWorkshop Report 2006,50
local.opc-photo-id0646a
local.publishers-doi10.4171/OWR/2006/50
local.ems-referenceCraig Walter, Groves Mark, Schneider Guido: Mathematical Theory of Water Waves. Oberwolfach Rep. 3 (2006), 3007-30056. doi: 10.4171/OWR/2006/50


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record