Show simple item record

Profinite and Asymptotic Group Theory

dc.date.accessioned2019-10-24T13:43:33Z
dc.date.available2019-10-24T13:43:33Z
dc.date.issued2008
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3072
dc.description.abstractThis meeting was focused on asymptotic aspects of group theory. The resulting problems lead, in particular, to the study of infinite groups, with an emphasis on the asymptotic behaviour of their finite quotients. Properties of infinite families of finite groups are at the center of interest in the field. Our meeting also covered new results from the theory of profinite groups. The methods and results of this area find important applications in several other fields of mathematics. To give an example from number theory, the absolute Galois group of the rational numbers is a profinite group in a very natural way. We had several talks covering the applications.
dc.titleProfinite and Asymptotic Group Theory
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2008-28
local.series.idOWR-2008-28
local.subject.msc20
local.subject.msc22
local.subject.msc11
local.sortindex512
local.date-range22 Jun - 28 Jun 2008
local.workshopcode0826
local.workshoptitleProfinite and Asymptotic Group Theory
local.organizersFritz Grunewald, Düsseldorf; Dan Segal, Oxford
local.report-nameWorkshop Report 2008,28
local.opc-photo-id0826
local.publishers-doi10.4171/OWR/2008/28
local.ems-referenceGrunewald Fritz, Segal Dan: Profinite and Asymptotic Group Theory. Oberwolfach Rep. 5 (2008), 1537-1588. doi: 10.4171/OWR/2008/28


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record