Show simple item record

Sparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory

dc.date.accessioned2019-10-24T13:52:41Z
dc.date.available2019-10-24T13:52:41Z
dc.date.issued2009
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3117
dc.description.abstractThe statistical analysis of high dimensional data requires new techniques, extending results from nonparametric statistics, analysis, probability, approximation theory, and theoretical computer science. The main problem is how to unveil, (or to mimic performance of) sparse models for the data. Sparsity is generally meant in terms of the number of variables included, but may also be described in terms of smoothness, entropy, or geometric structures. A key objective is to adapt to unknown sparsity, yet keeping computational feasibility.
dc.titleSparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2009-16
local.series.idOWR-2009-16
local.subject.msc62
local.sortindex557
local.date-range15 Mar - 21 Mar 2009
local.workshopcode0912
local.workshoptitleSparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory
local.organizersPeter Bartlett, Berkeley; Vladimir Koltchinskii, Atlanta; Alexandre Tsybakov, Paris; Sara van der Geer, Zuerich
local.report-nameWorkshop Report 2009,16
local.opc-photo-id0912
local.publishers-doi10.4171/OWR/2009/16
local.ems-referenceBartlett Peter, Koltchinskii Vladimir, Tsybakov Alexandre, van de Geer Sara: Sparse Recovery Problems in High Dimensions: Statistical Inference and Learning Theory. Oberwolfach Rep. 6 (2009), 867-916. doi: 10.4171/OWR/2009/16


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record