Show simple item record

Multiplier Ideal Sheaves in Algebraic and Complex Geometry

dc.date.accessioned2019-10-24T13:53:37Z
dc.date.available2019-10-24T13:53:37Z
dc.date.issued2009
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3122
dc.description.abstractThe workshop Multiplier Ideal Sheaves in Algebraic and Complex Geometry, organised by Stefan Kebekus (Freiburg), Mihai Paun (Nancy), Georg Schumacher (Marburg) and Yum-Tong Siu (Cambridge MA) was held April 12th – April 18th, 2009. Since the previous Oberwolfach conference in 2004, there have been important new developments and results, both in the analytic and algebraic area, e.g. in the field of the extension of L2 holomorphic functions, the solution of the ACC conjecture, log-canonical rings, the Kähler–Ricci flow, Seshadri constants and the analogues of mula tiplier ideals in positive characteristic.
dc.titleMultiplier Ideal Sheaves in Algebraic and Complex Geometry
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2009-21
local.series.idOWR-2009-21
local.subject.msc14
local.sortindex562
local.date-range12 Apr - 18 Apr 2009
local.workshopcode0916
local.workshoptitleMultiplier Ideal Sheaves in Algebraic and Complex Geometry
local.organizersStefan Kebekus, Köln; Mihai Paun, Nancy; Georg Schumacher, Marburg; Yum-Tong Siu, Cambridge MA
local.report-nameWorkshop Report 2009,21
local.opc-photo-id0916
local.publishers-doi10.4171/OWR/2009/21
local.ems-referenceKebekus Stefan, Paun Mihai, Schumacher Georg, Siu Yum-Tong: Multiplier Ideal Sheaves in Algebraic and Complex Geometry. Oberwolfach Rep. 6 (2009), 1101-1156. doi: 10.4171/OWR/2009/21


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record