Zur Kurzanzeige

Mini-Workshop: Generalizations of Symmetric Spaces

dc.date.accessioned2019-10-24T14:28:17Z
dc.date.available2019-10-24T14:28:17Z
dc.date.issued2012
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3290
dc.description.abstractThis workshop brought together experts from the areas of algebraic Lie theory, invariant theory, Kac–Moody theory and the theories of Tits buildings and of symmetric spaces. The main focus was on topics related to symmetric spaces in order to stimulate progress in current research projects or trigger new collaboration via comparison, analogy, transfer, generalization, and unification of methods. Specific topics that were covered include Kac–Moody symmetric spaces, double coset decompositions of (groups of rational points of) algebraic groups and Kac–Moody groups, and symmetric/Gelfand pairs in Lie algebras.
dc.titleMini-Workshop: Generalizations of Symmetric Spaces
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2012-18
local.series.idOWR-2012-18
local.subject.msc51
local.subject.msc17
local.subject.msc53
local.subject.msc20
local.sortindex730
local.date-range08 Apr - 14 Apr 2012
local.workshopcode1215a
local.workshoptitleMini-Workshop: Generalizations of Symmetric Spaces
local.organizersRalf Köhl, Gießen; Aloysius Helminck, Raleigh
local.report-nameWorkshop Report 2012,18
local.opc-photo-id1215a
local.publishers-doi10.4171/OWR/2012/18
local.ems-referenceKöhl Ralf, Helminck Aloysius: Mini-Workshop: Generalizations of Symmetric Spaces. Oberwolfach Rep. 9 (2012), 1107-1148. doi: 10.4171/OWR/2012/18


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige