Show simple item record

Algebraic Groups

dc.date.accessioned2019-10-24T14:40:07Z
dc.date.available2019-10-24T14:40:07Z
dc.date.issued2013
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3348
dc.description.abstractLinear algebraic groups is an active research area in contemporary mathematics. It has rich connections to algebraic geometry, representation theory, algebraic combinatorics, number theory, algebraic topology, and differential equations. The foundations of this theory were laid by A. Borel, C. Chevalley, T. A. Springer and J. Tits in the second half of the 20th century. The Oberwolfach workshops on algebraic groups, led by Springer and Tits, played an important role in this effort as a forum for researchers, meeting at approximately 3 year intervals since the 1960s. The present workshop continued this tradition, featuring a number of important recent developments in the subject.
dc.titleAlgebraic Groups
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2013-17
local.series.idOWR-2013-17
local.subject.msc14
local.subject.msc17
local.subject.msc20
local.sortindex788
local.date-range07 Apr - 13 Apr 2013
local.workshopcode1315
local.workshoptitleAlgebraic Groups
local.organizersMichel Brion, Saint-Martin-d'Heres; Jens Carsten Jantzen, Aarhus; Zinovy Reichstein, Vancouver
local.report-nameWorkshop Report 2013,17
local.opc-photo-id1315
local.publishers-doi10.4171/OWR/2013/17
local.ems-referenceBrion Michel, Jantzen Jens Carsten, Reichstein Zinovy: Algebraic Groups. Oberwolfach Rep. 10 (2013), 1025-1085. doi: 10.4171/OWR/2013/17


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record