dc.date.accessioned | 2019-10-24T14:43:11Z | |
dc.date.available | 2019-10-24T14:43:11Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3363 | |
dc.description.abstract | Algebraic K-theory and motivic cohomology are strongly related tools providing a systematic way of producing invariants for algebraic or geometric structures. The definition and methods are taken from algebraic topology, but there have been particularly fruitful applications to problems of algebraic geometry, number theory or quadratic forms. 19 one-hour talks presented a wide range of latest results on the theory and its applications. | |
dc.title | Algebraic K-theory and Motivic Cohomology | |
dc.identifier.doi | 10.14760/OWR-2013-32 | |
local.series.id | OWR-2013-32 | |
local.subject.msc | 14 | |
local.subject.msc | 19 | |
local.sortindex | 803 | |
local.date-range | 23 Jun - 29 Jun 2013 | |
local.workshopcode | 1326 | |
local.workshoptitle | Algebraic K-theory and Motivic Cohomology | |
local.organizers | Thomas Geisser, Nagoya; Annette Huber-Klawitter, Freiburg; Uwe Jannsen, Regensburg; Marc Levine, Essen | |
local.report-name | Workshop Report 2013,32 | |
local.opc-photo-id | 1326 | |
local.publishers-doi | 10.4171/OWR/2013/32 | |
local.ems-reference | Geisser Thomas, Huber-Klawitter Annette, Jannsen Uwe, Levine Marc: Algebraic K-theory and Motivic Cohomology. Oberwolfach Rep. 10 (2013), 1861-1913. doi: 10.4171/OWR/2013/32 | |