dc.date.accessioned | 2019-10-24T14:54:27Z | |
dc.date.available | 2019-10-24T14:54:27Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3417 | |
dc.description.abstract | The theory of Newton–Okounkov bodies, also called Okounkov bodies, is a relatively new connection between algebraic geometry and convex geometry. It generalizes the well-known and extremely rich correspondence between geometry of toric varieties and combinatorics of convex integral polytopes. Following a successful MFO Mini-workshop on this topic in August 2011, the MFO Half-Workshop 1422b, “Okounkov bodies and applications”, held in May 2014, explored the development of this area in recent years, with particular attention to applications and relationships to other areas such as number theory and tropical geometry. | |
dc.title | Okounkov Bodies and Applications | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2014-27 | |
local.series.id | OWR-2014-27 | |
local.subject.msc | 51 | |
local.subject.msc | 14 | |
local.sortindex | 857 | |
local.date-range | 25 May - 31 May 2014 | |
local.workshopcode | 1422b | |
local.workshoptitle | Okounkov Bodies and Applications | |
local.organizers | Megumi Harada, Hamilton; Kiumars Kaveh, Pittsburgh; Askold Khovanskii, Toronto | |
local.report-name | Workshop Report 2014,27 | |
local.opc-photo-id | 1422b | |
local.publishers-doi | 10.4171/OWR/2014/27 | |
local.ems-reference | Harada Megumi, Kaveh Kiumars, Khovanskii Askold: Okounkov Bodies and Applications. Oberwolfach Rep. 11 (2014), 1459-1513. doi: 10.4171/OWR/2014/27 | |