Show simple item record

Okounkov Bodies and Applications

dc.date.accessioned2019-10-24T14:54:27Z
dc.date.available2019-10-24T14:54:27Z
dc.date.issued2014
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3417
dc.description.abstractThe theory of Newton–Okounkov bodies, also called Okounkov bodies, is a relatively new connection between algebraic geometry and convex geometry. It generalizes the well-known and extremely rich correspondence between geometry of toric varieties and combinatorics of convex integral polytopes. Following a successful MFO Mini-workshop on this topic in August 2011, the MFO Half-Workshop 1422b, “Okounkov bodies and applications”, held in May 2014, explored the development of this area in recent years, with particular attention to applications and relationships to other areas such as number theory and tropical geometry.
dc.titleOkounkov Bodies and Applications
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2014-27
local.series.idOWR-2014-27
local.subject.msc51
local.subject.msc14
local.sortindex857
local.date-range25 May - 31 May 2014
local.workshopcode1422b
local.workshoptitleOkounkov Bodies and Applications
local.organizersMegumi Harada, Hamilton; Kiumars Kaveh, Pittsburgh; Askold Khovanskii, Toronto
local.report-nameWorkshop Report 2014,27
local.opc-photo-id1422b
local.publishers-doi10.4171/OWR/2014/27
local.ems-referenceHarada Megumi, Kaveh Kiumars, Khovanskii Askold: Okounkov Bodies and Applications. Oberwolfach Rep. 11 (2014), 1459-1513. doi: 10.4171/OWR/2014/27


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record