Show simple item record

Arithmetic Geometry

dc.date.accessioned2019-10-24T15:21:03Z
dc.date.available2019-10-24T15:21:03Z
dc.date.issued2016
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3542
dc.description.abstractArithmetic geometry is at the interface between algebraic geometry and number theory, and studies schemes over the ring of integers of number fields, or their $p$-adic completions. An emphasis of the workshop was on p-adic techniques, but various other aspects including Hodge theory, Arakelov theory and global questions were discussed.
dc.titleArithmetic Geometry
dc.identifier.doi10.14760/OWR-2016-38
local.series.idOWR-2016-38
local.subject.msc11
local.sortindex982
local.date-range07 Aug - 13 Aug 2016
local.workshopcode1632
local.workshoptitleArithmetic Geometry
local.organizersGerd Faltings, Bonn; Johan de Jong, New York; Peter Scholze, Bonn
local.report-nameWorkshop Report 2016,38
local.opc-photo-id1632
local.publishers-doi10.4171/OWR/2016/38
local.ems-referenceFaltings Gerd, de Jong Johan, Scholze Peter: Arithmetic Geometry. Oberwolfach Rep. 13 (2016), 2171-2224. doi: 10.4171/OWR/2016/38


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record