dc.date.accessioned | 2019-10-24T15:21:58Z | |
dc.date.available | 2019-10-24T15:21:58Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3546 | |
dc.description.abstract | Self-adaptive numerical methods provide a powerful and automatic approach in scientific computing. In particular, Adaptive Mesh Refinement (AMR) algorithms have been widely used in computational science and engineering and have become a necessary tool in computer simulations of complex natural and engineering problems. The key ingredient for success of self-adaptive numerical methods is a posteriori error estimates that are able to accurately locate sources of global and local error in the current approximation. The workshop creates a forum for junior and senior researchers in numerical analysis and computational science and engineering to discuss recent advances, initiates future research projects, and establishes new collaborations on convergence theory of adaptive numerical methods and on the construction and analysis of efficient, reliable, and robust a posteriori error estimators for computationally challenging problems. | |
dc.title | Self-Adaptive Numerical Methods for Computationally Challenging Problems | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2016-42 | |
local.series.id | OWR-2016-42 | |
local.subject.msc | 76 | |
local.subject.msc | 65 | |
local.subject.msc | 73 | |
local.sortindex | 986 | |
local.date-range | 04 Sep - 10 Sep 2016 | |
local.workshopcode | 1636 | |
local.workshoptitle | Self-Adaptive Numerical Methods for Computationally Challenging Problems | |
local.organizers | Randy Bank, La Jolla; Zhiqiang Cai, West Lafayette; Rüdiger Verfürth, Bochum | |
local.report-name | Workshop Report 2016,42 | |
local.opc-photo-id | 1636 | |
local.publishers-doi | 10.4171/OWR/2016/42 | |
local.ems-reference | Bank Randolph, Cai Zhiqiang, Verfürth Rüdiger: Self-Adaptive Numerical Methods for Computationally Challenging Problems. Oberwolfach Rep. 13 (2016), 2399-2464. doi: 10.4171/OWR/2016/42 | |