Show simple item record

Representation Theory of Quivers and Finite Dimensional Algebras

dc.date.accessioned2019-10-24T15:28:25Z
dc.date.available2019-10-24T15:28:25Z
dc.date.issued2017
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3576
dc.description.abstractMethods and results from the representation theory of quivers and finite dimensional algebras have led to many interactions with other areas of mathematics. Such areas include the theory of Lie algebras and quantum groups, commutative algebra, algebraic geometry and topology, and in particular the theory of cluster algebras. The aim of this workshop was to further develop such interactions and to stimulate progress in the representation theory of algebras.
dc.titleRepresentation Theory of Quivers and Finite Dimensional Algebras
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2017-12
local.series.idOWR-2017-12
local.subject.msc13
local.subject.msc20
local.subject.msc14
local.subject.msc17
local.subject.msc16
local.subject.msc18
local.subject.msc15
local.sortindex1016
local.date-range19 Feb - 25 Feb 2017
local.workshopcode1708
local.workshoptitleRepresentation Theory of Quivers and Finite Dimensional Algebras
local.organizersWilliam Crawley-Boevey, Leeds; Osamu Iyama, Nagoya; Henning Krause, Bielefeld
local.report-nameWorkshop Report 2017,12
local.opc-photo-id1708
local.publishers-doi10.4171/OWR/2017/12
local.ems-referenceCrawley-Boevey William, Iyama Osamu, Krause Henning: Representation Theory of Quivers and Finite Dimensional Algebras. Oberwolfach Rep. 14 (2017), 591-681. doi: 10.4171/OWR/2017/12


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record