Zur Kurzanzeige

Algebraic Groups

dc.date.accessioned2019-10-24T15:30:30Z
dc.date.available2019-10-24T15:30:30Z
dc.date.issued2017
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3585
dc.description.abstractLinear algebraic groups is an active research area in contemporary mathematics. It has rich connections to algebraic geometry, representation theory, algebraic combinatorics, number theory, algebraic topology, and differential equations. The foundations of this theory were laid by A. Borel, C. Chevalley, J.-P. Serre, T. A. Springer and J. Tits in the second half of the 20th century. The Oberwolfach workshops on algebraic groups, led by Springer and Tits, played an important role in this effort as a forum for researchers, meeting at approximately 3 year intervals since the 1960s. The present workshop continued this tradition, covering a range of topics, with an emphasis on recent developments in the subject.
dc.titleAlgebraic Groups
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2017-21
local.series.idOWR-2017-21
local.subject.msc14
local.subject.msc17
local.subject.msc20
local.sortindex1025
local.date-range23 Apr - 29 Apr 2017
local.workshopcode1717
local.workshoptitleAlgebraic Groups
local.organizersCorrado De Concini, Roma; Peter Littelmann, Köln; Zinovy Reichstein, Vancouver
local.report-nameWorkshop Report 2017,21
local.opc-photo-id1717
local.publishers-doi10.4171/OWR/2017/21
local.ems-referenceDe Concini Corrado, Littelmann Peter, Reichstein Zinovy: Algebraic Groups. Oberwolfach Rep. 14 (2017), 1281-1347. doi: 10.4171/OWR/2017/21


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige