Zur Kurzanzeige

Analysis, Geometry and Topology of Positive Scalar Curvature Metrics

dc.date.accessioned2019-10-24T15:33:56Z
dc.date.available2019-10-24T15:33:56Z
dc.date.issued2017
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3600
dc.description.abstractRiemannian manifolds with positive scalar curvature play an important role in mathematics and general relativity. Obstruction and existence results are connected to index theory, bordism theory and homotopy theory, using methods from partial differential equations and functional analysis. The workshop led to a lively interaction between mathematicians working in these areas.
dc.titleAnalysis, Geometry and Topology of Positive Scalar Curvature Metrics
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2017-36
local.series.idOWR-2017-36
local.subject.msc19
local.subject.msc53
local.subject.msc35
local.subject.msc57
local.sortindex1040
local.date-range06 Aug - 12 Aug 2017
local.workshopcode1732
local.workshoptitleAnalysis, Geometry and Topology of Positive Scalar Curvature Metrics
local.organizersBernd Ammann, Regensburg; Bernhard Hanke, Augsburg; André Neves, London
local.report-nameWorkshop Report 2017,36
local.opc-photo-id1732
local.publishers-doi10.4171/OWR/2017/36
local.ems-referenceAmmann Bernd, Hanke Bernhard, Neves André: Analysis, Geometry and Topology of Positive Scalar Curvature Metrics. Oberwolfach Rep. 14 (2017), 2223-2298. doi: 10.4171/OWR/2017/36


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige