Zur Kurzanzeige

Arbeitsgemeinschaft: Additive Combinatorics, Entropy, and Fractal Geometry

dc.date.accessioned2019-10-24T15:36:22Z
dc.date.available2019-10-24T15:36:22Z
dc.date.issued2017
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3611
dc.description.abstractThe aim of the workshop was to survey recent developments in fractal geometry, specifically those related to projections and slices of planar self-similar sets, and dimension and absolute continuity of self-similar measures on the line, in particular Bernoulli convolutions. The methods combine ergodic theory, additive combinatorics, and algebraic number theory. Talks were high-level descriptions of the results, aimed at a mixed audience with minimal background in real analysis, ergodic theory and dimension theory.
dc.titleArbeitsgemeinschaft: Additive Combinatorics, Entropy, and Fractal Geometry
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2017-47
local.series.idOWR-2017-47
local.subject.msc28
local.sortindex1051
local.date-range08 Oct - 13 Oct 2017
local.workshopcode1741
local.workshoptitleArbeitsgemeinschaft: Additive Combinatorics, Entropy, and Fractal Geometry
local.organizersEmmanuel Breuillard, Münster; Mike Hochman, Jerusalem; Pablo Shmerkin, Buenos Aires
local.report-nameWorkshop Report 2017,47
local.opc-photo-id1741
local.publishers-doi10.4171/OWR/2017/47
local.ems-referenceBreuillard Emmanuel, Hochman Michael, Shmerkin Pablo: Arbeitsgemeinschaft: Additive Combinatorics, Entropy, and Fractal Geometry. Oberwolfach Rep. 14 (2017), 2847-2905. doi: 10.4171/OWR/2017/47


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige