Zur Kurzanzeige

Arbeitsgemeinschaft: Topological Cyclic Homology

dc.date.accessioned2019-10-24T15:42:04Z
dc.date.available2019-10-24T15:42:04Z
dc.date.issued2018
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3637
dc.description.abstractIntroduced by Bökstedt-Hsiang-Madsen in the nineties, topological cyclic homology is a manifestation of the dual visions of Connes-Tsygan and Waldhausen to extend de Rham cohomology to a noncommutative setting and to replace algebra by higher algebra. The cohomology theory that ensues receives a denominator-free Chern character from algebraic K-theory, used by Hesselholt-Madsen to evaluate the p-adic K-theory of p-adic fields. More recently, Bhatt-Morrow-Scholze have defined a “motivic” filtration of topological cyclic homology and its variants, the filtration quotients of which give rise to their denominator-free p-adic Hodge theory AΩ.
dc.titleArbeitsgemeinschaft: Topological Cyclic Homology
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2018-15
local.series.idOWR-2018-15
local.subject.msc19
local.subject.msc14
local.subject.msc13
local.sortindex1077
local.date-range01 Apr - 07 Apr 2018
local.workshopcode1814
local.workshoptitleArbeitsgemeinschaft: Topological Cyclic Homology
local.organizersLars Hesselholt, Copenhagen; Peter Scholze, Bonn
local.report-nameWorkshop Report 2018,15
local.opc-photo-id1814
local.publishers-doi10.4171/OWR/2018/15
local.ems-referenceHesselholt Lars, Scholze Peter: Arbeitsgemeinschaft: Topological Cyclic Homology. Oberwolfach Rep. 15 (2018), 805-940. doi: 10.4171/OWR/2018/15


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige