Show simple item record

Arbeitsgemeinschaft: Topological Cyclic Homology

dc.date.accessioned2019-10-24T15:42:04Z
dc.date.available2019-10-24T15:42:04Z
dc.date.issued2018
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3637
dc.description.abstractIntroduced by Bökstedt-Hsiang-Madsen in the nineties, topological cyclic homology is a manifestation of the dual visions of Connes-Tsygan and Waldhausen to extend de Rham cohomology to a noncommutative setting and to replace algebra by higher algebra. The cohomology theory that ensues receives a denominator-free Chern character from algebraic K-theory, used by Hesselholt-Madsen to evaluate the p-adic K-theory of p-adic fields. More recently, Bhatt-Morrow-Scholze have defined a “motivic” filtration of topological cyclic homology and its variants, the filtration quotients of which give rise to their denominator-free p-adic Hodge theory AΩ.
dc.titleArbeitsgemeinschaft: Topological Cyclic Homology
dc.identifier.doi10.14760/OWR-2018-15
local.series.idOWR-2018-15
local.subject.msc13
local.subject.msc14
local.subject.msc19
local.sortindex1077
local.date-range01 Apr - 07 Apr 2018
local.workshopcode1814
local.workshoptitleArbeitsgemeinschaft: Topological Cyclic Homology
local.organizersLars Hesselholt, Copenhagen; Peter Scholze, Bonn
local.report-nameWorkshop Report 2018,15
local.opc-photo-id1814
local.publishers-doi10.4171/OWR/2018/15
local.ems-referenceHesselholt Lars, Scholze Peter: Arbeitsgemeinschaft: Topological Cyclic Homology. Oberwolfach Rep. 15 (2018), 805-940. doi: 10.4171/OWR/2018/15


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record