dc.date.accessioned | 2019-10-24T15:45:47Z | |
dc.date.available | 2019-10-24T15:45:47Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3654 | |
dc.description.abstract | Non-commutative geometry today is a new but mature branch of mathematics shedding light on many other areas from number theory to operator algebras. In the 2018 meeting two of these connections were highlighted. For once, the applications to mathematical physics, in particular quantum field theory. Indeed, it was quantum theory which told us first that the world on small scales inherently is non-commutative. The second connection was to index theory with its applications in differential geometry. Here, non-commutative geometry provides the fine tools to obtain higher information. | |
dc.title | Non-commutative Geometry, Index Theory and Mathematical Physics | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWR-2018-32 | |
local.series.id | OWR-2018-32 | |
local.subject.msc | 58 | |
local.subject.msc | 81 | |
local.subject.msc | 19 | |
local.sortindex | 1094 | |
local.date-range | 08 Jul - 14 Jul 2018 | |
local.workshopcode | 1828 | |
local.workshoptitle | Non-commutative Geometry, Index Theory and Mathematical Physics | |
local.organizers | Alain Connes, Paris; Ryszard Nest, Copenhagen; Thomas Schick, Göttingen; Guoliang Yu, College Station | |
local.report-name | Workshop Report 2018,32 | |
local.opc-photo-id | 1828 | |
local.publishers-doi | 10.4171/OWR/2018/32 | |
local.ems-reference | Connes Alain, Nest Ryszard, Schick Thomas, Yu Guoliang: Non-commutative Geometry, Index Theory and Mathematical Physics. Oberwolfach Rep. 15 (2018), 1911-1981. doi: 10.4171/OWR/2018/32 | |