Show simple item record

dc.contributor.authorMillet, Annie
dc.contributor.authorSanz-Solé, Marta
dc.date.accessioned2019-11-13T07:54:04Z
dc.date.available2019-11-13T07:54:04Z
dc.date.issued2019-11-13
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3683
dc.description.abstractWe prove existence and uniqueness of a random field solution $(u(t,x);(t,x)\in [0,T]\times \mathbb{R}^d)$ to a stochastic wave equation in dimensions $d=1,2,3$ with diffusion and drift coefficients of the form $|x| \big( \ln_+(|x|) \big)^a$ for some $a$>0. The proof relies on a sharp analysis of moment estimates of time and space increments of the corresponding stochastic wave equation with globally Lipschitz coefficients. We give examples of spatially correlated Gaussian driving noises where the results apply.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2019,26
dc.subjectStochastic wave equationen_US
dc.subjectSuper-linear coefficientsen_US
dc.subjectGlobal well-posednessen_US
dc.titleGlobal Solutions to Stochastic Wave Equations with Superlinear Coefficientsen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2019-26
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2019-26en_US
local.subject.msc60en_US
local.subject.msc35en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record