Show simple item record

dc.contributor.authorZelazo, Daniel
dc.contributor.authorZhao, Shiyu
dc.contributor.editorMunday, Sara
dc.contributor.editorJahns, Sophia
dc.date.accessioned2019-12-11T11:07:22Z
dc.date.available2019-12-11T11:07:22Z
dc.date.issued2019-12-11
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3689
dc.description.abstractFormation control is one of the fundamental coordination tasks for teams of autonomous vehicles. Autonomous formations are used in applications ranging from search-and-rescue operations to deep space exploration, with benefits including increased robustness to failures and risk mitigation for human operators. The challenge of formation control is to develop distributed control strategies using vehicle onboard sensing that ensures the desired formation is obtained. This snapshot describes how the mathematical theory of rigidity has emerged as an important tool in the study of formation control problems.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2019,17
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleFormation Control and Rigidity Theoryen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2019-017-EN
local.series.idSNAP-2019-017-ENen_US
local.subject.snapshotDiscrete Mathematics and Foundationsen_US
dc.identifier.urnurn:nbn:de:101:1-2019121208443475339727
dc.identifier.ppn1685385745


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International