Show simple item record

dc.contributor.authorBartoli, Daniele
dc.contributor.authorBorges, Herivelto
dc.contributor.authorQuoos, Luciane
dc.date.accessioned2020-03-17T12:38:32Z
dc.date.available2020-03-17T12:38:32Z
dc.date.issued2020-03-14
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3707
dc.description.abstractIn connection with Galois Theory and Algebraic Curves, this paper investigates rational functions $h(x) = f(x)/g(x) \in \mathbb{F}_q(x)$ for which the value set $V_h = {\{h(α) | α \in \mathbb{F}_q \cup\{\infty\}}\}$ is relatively small. In particular, under certain circumstances, it proves that $h(x)$ having a small value set is equivalent to the field extension $\mathbb{F}_q(x)/\mathbb{F}_q(h(x))$ being Galois.eng_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2020,05
dc.titleRational Functions with Small Value Seten_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2020-05
local.scientificprogramResearch in Pairs 2019en_US
local.series.idOWP-2020-05en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record