Show simple item record

dc.contributor.authorHart, Sarah
dc.contributor.authorKelsey, Veronica
dc.contributor.authorRowley, Peter
dc.date.accessioned2020-03-17T13:56:10Z
dc.date.available2020-03-17T13:56:10Z
dc.date.issued2020-03-16
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3709
dc.description.abstractSupposing $G$ is a group and $k$ a natural number, $d_k(G)$ is defined to be the minimal number of elements of $G$ of order $k$ which generate $G$ (setting $d_k(G) = 0$ if $G$ has no such generating sets). This paper investigates $d_k(G)$ when $G$ is a finite Coxeter group either of type $B_n$ or $D_n$ or of exceptional type. Together with Garzoni [3] and Yu [10], this determines $d_k(G)$ for all finite irreducible Coxeter groups $G$ when 2$ \leq k \leq$rank$(G)$ (rank$(G) + 1$ when $G$ is of type $A_n$).en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2020,07
dc.titleGenerating Finite Coxeter Groups with Elements of the Same Orderen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2020-07
local.scientificprogramResearch in Pairs 2020en_US
local.series.idOWP-2020-07en_US
dc.identifier.urnurn:nbn:de:101:1-2020042116223914520247
dc.identifier.ppn169565790X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record