dc.contributor.author | Hart, Sarah | |
dc.contributor.author | Kelsey, Veronica | |
dc.contributor.author | Rowley, Peter | |
dc.date.accessioned | 2020-03-17T13:56:10Z | |
dc.date.available | 2020-03-17T13:56:10Z | |
dc.date.issued | 2020-03-16 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3709 | |
dc.description.abstract | Supposing $G$ is a group and $k$ a natural number, $d_k(G)$ is defined to be the minimal number of elements of $G$ of order $k$ which generate $G$ (setting $d_k(G) = 0$ if $G$ has no such generating sets). This paper investigates $d_k(G)$ when $G$ is a finite Coxeter group either of type $B_n$ or $D_n$ or of exceptional type. Together with Garzoni [3] and Yu [10], this determines $d_k(G)$ for all finite irreducible Coxeter groups $G$ when 2$ \leq k \leq$rank$(G)$ (rank$(G) + 1$ when $G$ is of type $A_n$). | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2020,07 | |
dc.title | Generating Finite Coxeter Groups with Elements of the Same Order | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2020-07 | |
local.scientificprogram | Research in Pairs 2020 | en_US |
local.series.id | OWP-2020-07 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2020042116223914520247 | |
dc.identifier.ppn | 169565790X | |