Zur Kurzanzeige

Arithmetic of Shimura Varieties

dc.date.accessioned2020-03-24T13:04:03Z
dc.date.available2020-03-24T13:04:03Z
dc.date.issued2019
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3717
dc.description.abstractArithmetic properties of Shimura varieties are an exciting topic which has roots in classical topics of algebraic geometry and of number theory such as modular curves and modular forms. This very active research field has contributed to some of the most spectacular developments in number theory and arithmetic geometry in the last twenty years. Shimura varieties and their equal characteristic analogue, moduli spaces of shtukas, are closely related to the Langlands program (classical as well as $p$-adic). A particular case is given by moduli spaces of abelian varieties, a classical object of study in algebraic geometry.
dc.titleArithmetic of Shimura Varieties
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2019-2
local.series.idOWR-2019-2
local.subject.msc11
local.subject.msc14
local.date-range13 Jan - 19 Jan 2019
local.workshopcode1903
local.workshoptitleArithmetic of Shimura Varieties
local.organizersLaurent Fargues, Paris; Ulrich Goertz, Essen; Eva Viehmann, Garching; Torsten Wedhorn, Darmstadt
local.report-nameWorkshop Report 2019,2
local.opc-photo-id1903
local.publishers-doi10.4171/OWR/2019/2
local.ems-referenceFargues Laurent, Görtz Ulrich, Viehmann Eva, Wedhorn Torsten: Arithmetic of Shimura Varieties. Oberwolfach Rep. 16 (2019), 65-131. doi: 10.4171/OWR/2019/2


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige