Show simple item record

dc.contributor.authorBerg, Christian
dc.contributor.editorKronberg, Daniel
dc.contributor.editorJahns, Sophia
dc.date.accessioned2020-04-22T12:52:05Z
dc.date.available2020-04-22T12:52:05Z
dc.date.issued2020-04-22
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3739
dc.description.abstractCan a continuous function on an interval be uniquely determined if we know all the integrals of the function against the natural powers of the variable? Following Weierstrass and Stieltjes, we show that the answer is yes if the interval is finite, and no if the interval is infinite.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2020,04
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleDeterminacy versus indeterminacyen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2020-004-EN
local.series.idSNAP-2020-004-ENen_US
local.subject.snapshotAnalysisen_US
local.subject.snapshotProbability Theory and Statisticsen_US
dc.identifier.urnurn:nbn:de:101:1-2020042312432225947534
dc.identifier.ppn1696061008


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International