Zur Kurzanzeige

dc.contributor.authorBessaih, Hakima
dc.contributor.authorMillet, Annie
dc.date.accessioned2020-05-06T07:52:31Z
dc.date.available2020-05-06T07:52:31Z
dc.date.issued2020-05-06
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3744
dc.description.abstractWe prove that the implicit time Euler scheme coupled with finite elements space discretization for the 2D Navier-Stokes equations on the torus subject to a random perturbation converges in $L^2(\Omega)$, and describe the rate of convergence for an $H^1$-valued initial condition. This refines previous results which only established the convergence in probability of these numerical approximations. Using exponential moment estimates of the solution of the stochastic Navier-Stokes equations and convergence of a localized scheme, we can prove strong convergence of this space-time approximation. The speed of the $L^2(\Omega)$-convergence depends on the diffusion coefficient and on the viscosity parameter. In case of Scott-Vogelius mixed elements and for an additive noise, the convergence is polynomial.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2020,12
dc.subjectStochastic Navier-Stokes equationsen_US
dc.subjectEuler schemesen_US
dc.subjectFinite elementsen_US
dc.subjectStrong convergenceen_US
dc.subjectImplicit time discretizationen_US
dc.subjectExponential momentsen_US
dc.titleSpace-Time Euler Discretization Schemes for the Stochastic 2D Navier-Stokes Equationsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2020-12
local.scientificprogramResearch in Pairs 2019en_US
local.series.idOWP-2020-12en_US
local.subject.msc60en_US
local.subject.msc76en_US
dc.identifier.urnurn:nbn:de:101:1-2020062511524489455582
dc.identifier.ppn1699792593


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige