dc.contributor.author | Bessaih, Hakima | |
dc.contributor.author | Millet, Annie | |
dc.date.accessioned | 2020-05-06T07:52:31Z | |
dc.date.available | 2020-05-06T07:52:31Z | |
dc.date.issued | 2020-05-06 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/3744 | |
dc.description.abstract | We prove that the implicit time Euler scheme coupled with finite elements space discretization for the 2D Navier-Stokes equations on the torus subject to a random perturbation converges in $L^2(\Omega)$, and describe the rate of convergence for an $H^1$-valued initial condition. This refines previous results which only established the convergence in probability of these numerical approximations. Using exponential moment estimates of the solution of the stochastic Navier-Stokes equations and convergence of a localized scheme, we can prove strong convergence of this space-time approximation. The speed of the $L^2(\Omega)$-convergence depends on the diffusion coefficient and on the viscosity parameter. In case of Scott-Vogelius mixed elements and for an additive noise, the convergence is polynomial. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2020,12 | |
dc.subject | Stochastic Navier-Stokes equations | en_US |
dc.subject | Euler schemes | en_US |
dc.subject | Finite elements | en_US |
dc.subject | Strong convergence | en_US |
dc.subject | Implicit time discretization | en_US |
dc.subject | Exponential moments | en_US |
dc.title | Space-Time Euler Discretization Schemes for the Stochastic 2D Navier-Stokes Equations | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2020-12 | |
local.scientificprogram | Research in Pairs 2019 | en_US |
local.series.id | OWP-2020-12 | en_US |
local.subject.msc | 60 | en_US |
local.subject.msc | 76 | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2020062511524489455582 | |
dc.identifier.ppn | 1699792593 | |