Zur Kurzanzeige

Statistical Methodology and Theory for Functional and Topological Data

dc.date.accessioned2020-06-17T09:19:38Z
dc.date.available2020-06-17T09:19:38Z
dc.date.issued2019
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3761
dc.description.abstractThe workshop focuses on the statistical analysis of complex data which cannot be represented as realizations of finite-dimensional random vectors. An example of such data are functional data. They arise in a variety of climate, biological, medical, physical and engineering problems, where the observations can be represented by curves and surfaces. Fast advances in technology continuously produce a deluge of bigger data with even more complex structures such as arteries in the brain, bones of a human body or social networks. This has sparked enormous interest in more general statistical problems where the random observations are elements of abstract topological spaces. The workshop will stimulate development of new statistical methods for these types of data and will be an ideal platform for discussing their theoretical properties (e.g. asymptotic optimality), computational performance, and new exciting applications in areas such as machine learning, image analysis, biometrics and econometrics.
dc.titleStatistical Methodology and Theory for Functional and Topological Data
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2019-28
local.series.idOWR-2019-28
local.subject.msc62
local.date-range16 Jun - 22 Jun 2019
local.workshopcode1925b
local.workshoptitleStatistical Methodology and Theory for Functional and Topological Data
local.organizersAurore Delaigle, Melbourne; Alexander Meister, Rostock; Victor Panaretos, Lausanne; Larry Wasserman, Pittsburgh
local.report-nameWorkshop Report 2019,28
local.opc-photo-id1925b
local.publishers-doi10.4171/OWR/2019/28
local.ems-referenceDelaigle Aurore, Meister Alexander, Panaretos Victor, Wasserman Larry: Statistical Methodology and Theory for Functional and Topological Data. Oberwolfach Rep. 16 (2019), 1697-1735. doi: 10.4171/OWR/2019/28


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige