Show simple item record

dc.contributor.authorGügümcü, Neslihan
dc.contributor.authorLambropoulou, Sofia
dc.date.accessioned2020-09-03T07:10:32Z
dc.date.available2020-09-03T07:10:32Z
dc.date.issued2020-09-03
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3771
dc.description.abstractBraidoids generalize the classical braids and form a counterpart theory to the theory of planar knotoids, just as the theory of braids does for the theory of knots. In this paper, we introduce the notion of braidoids in $\mathbb{R}^2$, a closure operation for braidoids, we prove an analogue of the Alexander theorem, namely an algorithm that turns a knotoid into a braidoid, and we formulate and prove a geometric analogue of the Markov theorem for braidoids using the $L$-moves.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2020,17
dc.subjectBraidoidsen_US
dc.subjectKnotoidsen_US
dc.subjectMarkov theoremen_US
dc.subjectAlexander theoremen_US
dc.titleBraidoidsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2020-17
local.scientificprogramOWLF 2019en_US
local.series.idOWP-2020-17en_US
local.subject.msc57en_US
dc.identifier.urnurn:nbn:de:101:1-2020090913574527370981
dc.identifier.ppn1729828191


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record