Show simple item record

dc.contributor.authorProietti, Valerio
dc.contributor.authorYamashita, Makoto
dc.date.accessioned2020-10-09T09:43:09Z
dc.date.available2020-10-09T09:43:09Z
dc.date.issued2020-10-09
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3800
dc.description.abstractGiven an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the $K$-groups of the groupoid C*-algebra when the groupoid has torsion-free stabilizers and satisfies the strong Baum–Connes conjecture. The construction is based on the triangulated category approach to the Baum–Connes conjecture by Meyer and Nest. For the unstable equivalence relation of a Smale space with totally disconnected stable sets, this spectral sequence shows Putnam’s homology groups on the second sheet.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints, 2020-20
dc.subjectGroupoiden_US
dc.subjectC*-algebraen_US
dc.subjectK-theoryen_US
dc.subjectHomologyen_US
dc.subjectBaum-Connes conjectureen_US
dc.subjectSmale spaceen_US
dc.titleHomology and $K$-Theory of Torsion-Free Ample Groupoids and Smale Spacesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2020-20
local.scientificprogramOWLF 2020en_US
local.series.idOWP-2020-20en_US
local.subject.msc46en_US
local.subject.msc19en_US
local.subject.msc37en_US
dc.identifier.urnurn:nbn:de:101:1-2020102212302016075013
dc.identifier.ppn1738645169


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record